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ABSTRACT 

Currently, all Missile Defense Agency (MDA) instrumentation radars are land-based at 

Reagan Test Site (RTS) in the Marshall Islands and the Pacific Missile Range Facility 

(PMRF) on the Hawaiian island of Kauai. The dependency on land-based radars produces 

significant gaps in radar coverage of planned ballistic missile defense system (BMDS) 

tests.  The S.S. Beaver State is a former cargo ship that was converted to a crane ship.  

The purpose of a crane ship is to unload/load other ships at ports with inadequate 

facilities.  When the Beaver State was converted to a crane ship, three large cranes were 

installed.  The size of the ship and generators make the Beaver State suitable to host the 

first X-Band Test Radar (XTR-1) and the second Transportable Telemetry System (TTS-

2).  There are five major efforts in the conversion process: 1) Ship reactivation; 2) 

Modification of the ship to host the primary sensors, the adjunct systems, and the 

respective operators; 3) Installation and integration of the primary sensors and adjunct 

systems; 4) Development, installation, and certification of the communications system; 

and 5) Coast Guard certification.  This thesis will review the history of the modification 

design and communications system development aspects of this conversion process, 

review the Department of Defense Architectural Framework (DoDAF), assess the 

applicability of DoDAF to the Beaver State conversion process, and suggest opportunities 

for improvement of similar MDA test asset development programs.  
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EXECUTIVE SUMMARY 

The conclusion of this thesis is the application of the Department of Defense Architecture 

Framework (DoDAF) to the design effort to convert a crane ship, Beaver State, to a range 

instrumentation ship would not have been very useful.  The effort to convert Beaver 

State, to be re-named Pacific Tracker, has five major efforts: 1) Ship reactivation, Beaver 

State had been mothballed in the Department of Transportation, Maritime 

Administration’s (MARAD) inactive reserve fleet; 2) Modification of Beaver State to 

host the Missile Defense Agency’s X-Band Test Radar (XTR-1), one of its Transportable 

Telemetry Systems (TTS), adjunct systems, and respective operators; 3) Installation and 

integration of XTR-1, TTS, and adjunct systems; 4) Development, , installation, and 

certification of the communications system; 5) Coast Guard certification.  The major 

engineering efforts in the conversion process that were considered in this thesis are: 1) 

The design of the modification for the ship to host the radar, telemetry, adjunct systems, 

and the respective operators; and 2) the design of the communications system.  DoDAF 

with its emphasis on interoperability would not have significantly impacted the major 

ship modifications such as: modifications to house system operators; TTS placement, or 

electrical system modifications.  Application of DoDAF to the communications system 

development would also not have a significant impact largely due to the evolutionary 

aspect of the communication system and the maturity of the established communication 

architecture. 

This thesis reviews other ships, Pacific Collector, Worthy, Observation Island, 

and SBX which MDA has used for BMDS testing. Then the Beaver State conversion 

project history and DoDAF are reviewed.  Next, sample DoDAF products that could have 

been produced for the Beaver State conversion are developed.  The assessment is made 

that the application of DoDAF would not have been very useful to the project and 

DoDAF’s utility for future MDA test asset developments would likely be similar.  

However, the development of DoDAF products relative to project organizations and 

processes did provide useful insights.  The products OV-4 and OV-5, in particular, were 

useful.  These products illustrated some complications with management of the project 

and operational processes.   
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I. INTRODUCTION 

A. BACKGROUND 

The objective of the Pacific Tracker (PT) is to provide a ship with instrumentation 

quality radar and telemetry reception systems for data collection on Missile Defense 

Agency (MDA) flight tests.  The MDA’s mission is to develop systems to defend the 

U.S., our troops, and our Allies from ballistic missile attacks (Testing, 2007).  The term 

“ballistic missile” covers a spectrum of systems.  At one end of the spectrum are the 

Intercontinental Ballistic Missiles (ICBM) with ranges over 5,500 km.  At the other end 

of the spectrum are the Short Range Ballistic Missiles (SRBM) with ranges as short as 80 

km (NAIC 1998).  This wide spectrum calls for flight test geometries that span tens of 

kilometers to thousands of kilometers between the target launch site and the interceptor’s 

launch site. 

Currently, all Missile Defense Agency instrumentation radars are land-based.  

Principally, these radars are located at the Ronald Reagan Ballistic Missile Defense Test 

Site (RTS) located on Kwajalein Atoll in the Marshall Islands and the Pacific Missile 

Range Facility (PMRF) on the Hawaiian island of Kauai.  The dependency on land-based 

radars produces significant gaps in radar coverage of planned ballistic missile defense 

system (BMDS) tests.  Historically, targets simulating Intercontinental Ballistic Missiles 

(ICBM) have been launched from Vandenberg Air Force Base (VAFB), in California, 

towards RTS.  The distance between VAFB and RTS is nearly 5,600 km.  While radar 

signature and metric data of the objects within the test scene are required throughout the 

trajectory, most of the trajectory is out of range or view of the land-based radars.  It is this 

gap in coverage that motivates the need for ship-based sensors.   

In this thesis, the term “radar signature data” refers to the radar derived data that 

is used to characterize an object so that it may be differentiated from other objects.  

Metric data refers to the motion and location of the object.   
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More recently, MDA has launched targets from Kodiak, an Alaskan island 

famous for its bears.  MDA has also launched targets simulating Medium Range Ballistic 

Missiles (MRBMs) and SRBMs in various locations across the Pacific from U.S. Air 

Force C-17 aircraft and from the sea-based Mobile Launch Platform, the ex-USS Tripoli.  

Land on which to base a radar is simply not available in most cases.  The mobile nature 

of the PT would allow MDA to greatly increase the radar and telemetry coverage on 

various tests locations across the Pacific.  In order to meet data collection requirements, 

MDA has decided to convert the S.S. Beaver State to host the X-Band Test Radar (XTR-

1) and the second Transportable Telemetry System (TTS-2).  (The TTS-1 is currently 

installed on MV Pacific Collector.) 

 

Figure 1.   The S.S. Beaver State as it is being towed from Suisun Bay Reserve Fleet 
in Benicia, CA to be temporarily berthed at Alameda, CA. (T. Amundsen, 

personal communication, 4 April 2008)  
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S.S. Beaver State is a former cargo ship that was converted to a crane ship.  The 

purpose of a crane ship is to unload or load other ships at ports with inadequate facilities.  

This sort of ship may be used to help put ashore a surge of materiel to support sustained 

combat operations.  When Beaver State was converted to a crane ship, three large cranes 

were installed.  To power the cranes, two 1200 kW diesel generators were also added.  

This size and number of generators are needed to reliably provide electrical power to the 

radar.  The size of the ship and generators make Beaver State suitable to host the XTR-1 

and TTS-2 systems and become Pacific Tracker.   

In the course of converting Beaver State into Pacific Tracker, the large cranes will 

be removed and other modifications to the ship will be necessary to host the XTR-1 and 

the TTS-2.  There are five major efforts in the conversion process:  

1.  Ship reactivation;  

2.  Modification of the ship to host the primary sensors, the adjunct systems, 

and the respective operators;  

3.  Installation and integration of the primary sensors and adjunct systems;  

4.  Development, installation, and accreditation of the communications 

system; and  

5.  Coast Guard certification.   

The major engineering efforts in the conversion process that are considered in this 

thesis are: 1) The design of the modification for the ship to host the radar, telemetry, 

adjunct systems, and the respective operators; and 2) the design of the communications 

system.  This thesis will review the history of these two aspects of this conversion 

process, review DoDAF 1.5, assess the applicability of DoDAF 1.5 to the Beaver State 

conversion process, and suggest opportunities for improvement of similar MDA test asset 

development programs.  
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B. PURPOSE 

The purpose of this thesis is to: 1) Describe the conversion of SS Beaver State 

into SS Pacific Tracker, a project that did not incorporate DoDAF methodology; 2) 

Assess whether incorporating DoDAF would have improved the way the project was 

done; and 3) Provide recommendations on incorporating DoDAF into other MDA test 

asset development projects. 

C. RESEARCH QUESTIONS 

The following questions will be addressed in this thesis: 

1. How was the Beaver State conversion project conducted?  

2. What is DoDAF? 

3. What DoDAF products might have been produced to support the project? 

4. How may have the DoDAF methodology changed the way the project was 

done? 

5. Would the DoDAF methodology have been useful to the project or be 

useful in future MDA test asset development projects?   

D. BENEFITS OF STUDY 

This thesis will document practical lessons derived from the Beaver State 

conversion.  Recommendations will be provided on the application of the derived lessons 

to other MDA one of a kind, or few of a kind, test asset development. 

E. SCOPE AND METHODOLOGY 

1. Scope 

The thesis will be limited to the applicability of DoDAF 1.5 to the design of the 

modifications for the ship to host the radar, telemetry, adjunct systems, and the respective 

operators; and the design of the communications system. 
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2. Methodology 

The methodology used in this thesis research consists of the following steps:  

1. Review other ships MDA has used for BMDS testing, and review project 

history of the conversion. 

2. Review DoDAF. 

3. Develop a sample of DoDAF products that could have been produced for 

the conversion. 

4. Assess whether the DoDAF approach would have been useful to the 

project and its utility for future MDA test asset developments 
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II. HISTORY OF THE BEAVER STATE CONVERSION 

A. BACKGROUND 

1. MDA Flight Testing 

The MDA’s mission is to develop systems to defend the U.S., our troops, and our 

Allies from ballistic missile attacks (Testing, 2009).  Missile Defense flight tests are 

designed to provide the Ballistic Missile Defense System (BMDS) with test scenarios 

sufficiently similar to hostile conditions to ascertain or demonstrate BMDS performance 

against the threat.  The term “threat” refers to the ballistic missiles of hostile or 

potentially hostile nations.  The term “ballistic missile” refers to “Any missile that does 

not rely upon aerodynamic surfaces to produce lift and consequently follows a ballistic 

trajectory when thrust is terminated” (MDA Glossary, n.d.).  Ballistic missiles include a 

variety of systems.  The largest and longest ranged systems are the Intercontinental 

Ballistic Missiles (ICBM).  For example, the Russian SS-18 Mod 5 has a range of over 

9,600 km.  The much smaller Russian SS-21 Mod 2, a Short Range Ballistic Missile 

(SRBM), has a range of only 75 km (NAIC 1998).  In order to test BMDS against this 

wide variety of missile systems, flight test geometries often span hundreds of kilometers 

for the SRBM scenarios to thousands of kilometers for the ICBM scenarios.   

The BMDS is “An integrated system that employs layered defenses to intercept 

missiles during their boost, midcourse, and terminal flight phases” (MDA Glossary, n.d.).  

Today’s BMDS architecture includes satellites, radars, interceptor missiles, and battle 

management systems.  The BMDS uses satellites and radars to detect and track threats 

once they have been launched.  The battle management system uses track information 

from the satellites and radars to launch interceptor missiles toward the approaching 

threat.  The interceptor missiles are designed to collide with and destroy the approaching 

threat missiles.  A test scenario will often include a target missile launch towards the 

BMDS in such a manner as to simulate a hostile engagement. 
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To characterize a BMDS test, MDA collects information from a variety of 

instrumentation.  Typical instrumentation includes radars, infrared imagers, visible 

imagers, and various sensors placed onboard the target missiles.  Instrumentation radars 

are used to collect metric and signature data on the test scene to confirm the 

characteristics of the target missile and the threat scene presented to the BMDS.  Various 

sensors placed onboard target missiles may include thermocouples and motion sensors 

that are designed to help characterize the target’s performance.  Data from the sensors 

onboard the target missiles are telemetered to surface receivers.  In a similar manner, data 

from the interceptor missiles may also be telemetered to surface receivers. 

Currently, all Missile Defense Agency instrumentation radars in the Pacific are 

land-based.  The premier radars are part of the Kiernan Reentry Measurements Site 

(KREMS) at the Reagan Test Site (RTS) in the Marshall Islands (RTS, n.d.).  Other 

significant radar assets are at the Pacific Missile Range Facility (PMRF) on the Hawaiian 

island of Kauai.  The dependency on land-based radars can produce significant gaps in 

radar coverage of planned ballistic missile defense system (BMDS) tests, and to avoid 

data gaps, less realistic engagement test geometries might be used.  Historically, targets 

simulating Intercontinental Ballistic Missiles (ICBM) have been launched from 

Vandenberg Air Force Base (VAFB) in California towards the U.S. Army Kwajalein 

Atoll (USAKA) Reagan Test Site (RTS) in the Marshall Islands.  While signature and 

metric data are required along the entire length of the trajectory, with a ground track 

covering 5,600 km, most of the trajectory is out of sight and view of the land-based 

radars due to the curvature of the earth. 

An instrumentation radar placed upon an appropriately positioned ship would 

close much of the gap in radar coverage in a VAFB to RTS trajectory.  A ship-based 

radar could also provide greatly improved coverage of targets launched from Kodiak, 

Alaska and other locations in the Pacific.  MDA has also launched target missiles 

simulating MRBMs and SRBMs in various remote locations across the Pacific.  In 

addition to launching targets from land bases, MDA has also air- and sea-launched 

targets.  MDA has used U.S. Air Force C-17 aircraft to air launch a target over the Pacific 

(News release 05-NEWS-0009, 2005).  Near the Hawaiian island of Kauai, MDA has 



 9

used the Mobile Launch Platform (MLP), the ex-USS Tripoli.  In June of 2008, MDA 

conducted a flight test off of Kauai where both the target and the interceptors were 

launched from vessels at sea.  The target SRBM was launched from the MLP.  Then, two 

interceptor missiles fired from the USS Lake Erie destroyed the target (Successful Sea-

Based Missile Defense Intercept).  MDA has requirements to collect radar data across the 

Pacific.  A ship-based radar could have allowed MDA to greatly increase the radar 

coverage of these various test locations across the Pacific.  MDA’s solution to close 

many of the radar data collection gaps across the Pacific is the XTR-1 radar aboard the 

ship, Pacific Tracker.   

2. Some Other Sea-Based Sensor Platforms MDA Has Used to Support 
Testing 

The use of sea-based instrumentation to support flight testing is not a new 

concept.  MDA has employed a number of instrumented sea-based platforms to support 

flight tests.  These sea-based platforms include the MV Pacific Collector, the USAV 

Worthy, the Mobile Aerial Target Support System (MATSS), the USNS Observation 

Island (OBIS), and the Sea-Based X-band radar (SBX). None of these vessels were 

originally designed or built to support missile testing.  Each vessel was designed and built 

for another function.  However, in each case, the vessels were modified in order to accept 

the specialized instrumentation used in BMDS testing.  The instrumentation on Pacific 

Collector and Worthy (Range Safety, n.d.) was developed and integrated on the ships 

specifically to support BMDS flight testing.  MDA developed the SBX to be part of the 

operational BMDS (Testing, 2009).  Even though the primary purpose of the SBX is not 

flight testing, MDA has been successful in collecting data with the SBX on MDA flight 

tests (News release 07-NEWS-0028, 2007).  The MATSS and OBIS were originally 

developed for other related purposes.  The PMRF developed MATSS to support naval 

weapons testing.  The radars on OBIS are used to collect data on foreign ballistic missile 

tests (Cobra Judy, n.d.).  However, the two systems, MATSS and OBIS, lend themselves 

well to supporting MDA flight tests.  
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a. MV Pacific Collector 

 

Figure 2.   The MV Pacific Collector.  The twin 7m dishes of the Transportable 
Telemetry System are seen in the aft section of the ship (T-AGS-29, n.d.). 

Pacific Collector (PC) is pictured in Figure 2.  The ship is the former 

Texas Clipper II, a school ship for the Texas A&M University maritime program.  Prior 

to serving as a school ship, the vessel was the USNS Chennault (T-AGS-29, n.d.).  The 

MDA engaged the Maritime Administration (MARAD) to manage the modification and 

operation of the Texas Clipper II.  Shortly after the modification, the Texas Clipper II 

was renamed Pacific Collector.  The installation of the Transportable Telemetry System-

1 (TTS-1) soon followed in late 2006.  The twin 7m dishes and control shelters can be 

seen on the aft section of the PC.  The PC was developed specifically by MDA to 

perform flight test telemetry data collection in the broad ocean area (BOA) where 

telemetry assets were not otherwise available.  The PC and TTS-1 system have collected 

data successfully on several missions since late 2006.  The current home port for the PC 

is Portland, Oregon.  
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DISPLACEMENT 5,360 T 

LENGTH 393 ft 

BEAM 54 ft 

DRAFT 31 ft 

PROPULSION 2 ALCO 251 V-12 DIESEL ENGINES, SINGLE 

SHAFT, 3,400 SHP 

Table 1.   MV Pacific Collector Specifications 

 

Figure 3.   USAV Worthy 

The USAV Worthy, pictured in Figure 3, is the former Stalwart Class 

Ocean Surveillance Ship USNS Worthy (USNS Worthy, n.d.).  The U.S. Army Kwajalein 

Atoll (USAKA) acquired the ship in 1995 and installed the Kwajalein Missile Range 

Safety System (KMRSS) “to support TMD related remote site launch activities” (Range 

Safety, n.d.).  TMD in this case stands for Theater Ballistic Missile Defense.  The 
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primary purpose of the KMRSS is to terminate powered flight of an errant missile.  The 

KMRSS uses redundant dishes to receive S-Band telemetry data from the missile.  The 

data includes the missile’s position, velocity, heading, and other factors.  This data is then 

processed to predict an impact point.  If the calculated impact point threatens a protected 

area, then a command is sent over UHF to terminate thrust (Range Safety, n.d.).  

DISPLACEMENT 2,262 LT 

LENGTH 224 ft 

BEAM 43 ft 

DRAFT 15 ft 

PROPULSION 4 Caterpillar 398D 

Table 2.   USAV Worthy Specifications (Missile Range Instrumentation Ships, 
2008) 

b. Observation Island 

 

Figure 4.   Observation Island: The S-Band phased array is seen on the aft deck, and 
the X-Band radar is seen atop the house, aft of the smokestack (USNS 

Observation Island, 2001). 
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The ship was originally launched in 1953.  The Navy acquired the ship 

three years later for use as a fleet ballistic missile test ship.  OBIS was kept in reserve 

from 1972 to 1977 before it was converted to a missile range instrumentation ship.  

Observation Island is currently operated by the Military Sealift Command (MSC) for the U.S. 

Air Force Technical Applications Center.  The ship is host to S-Band phased array radar and 

X-Band dish radar.  The OBIS is used for “worldwide, monitoring compliance with strategic 

arms treaties and supporting U.S. military weapons test programs” (Missile Range 

Instrumentation Ships, 2001).  The radars are collectively known as COBRA JUDY (Cobra 

Judy Radar System, n.d.). 

DISPLACEMENT 17,015 LT 

LENGTH 564 ft 

BEAM 76 ft 

DRAFT 28 ft 

PROPULSION Steam, 7180.25 kW 

Table 3.   USNS Observation Island Specifications (USNS Observation Island, 
2001) 

c. SBX 

 

Figure 5.   Sea-Based X-Band Radar:  The X-Band radar is under the large center 
dome (SBX, 2007). 
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The Sea-Based X-Band Radar (SBX) is unique for its physical design but 

also because it is part of the operational BMDS (Testing, 2009).  The twin-hulled vessel 

is based on a fifth-generation self-propelled, semi-submersible oil drilling platform.  The 

top of the dome is over 280 ft. above the keel.  The powerful radar “can be positioned to 

cover any part of the globe” (SBX, 2007).  The SBX is able to support BMDS testing; 

however, it is part of the operational BMDS.  As part of the BMDS, it is designed to track 

and discriminate between a hostile warhead and possible decoys (SBX, 2007). 

DISPLACEMENT ~50,000 T 

LENGTH 390 ft 

BEAM 240 ft 

DRAFT 133 ft 

PROPUSION 4 Siemens 3401.387 kW Electric Motors 

Table 4.   SBX specifications 

3. Pacific Tracker Concept 

The concept behind Pacific Tracker is to place a test range instrumentation 

quality radar, comparable to radars at USAKA, on a ship that can be positioned anywhere 

in the Pacific.  Such flexibility would provide radar coverage on BMDS flight test 

scenarios that now have significant gaps due to the distance from land-based test range 

instrumentation radar assets.   

Data from such a radar would be valuable for multiple reasons.  One is to 

characterize test events.  For example, a radar can be used to determine the time-

dependent position and motion of various test objects, associated hardware, and debris.  

The test objects may include the mock warhead of an offensive missile, possible decoys, 

and the interceptor kill vehicle (KV).  Associated hardware may include spent rocket 

motors and hardware that is dispersed when rocket stages separate or test objects are 

deployed.  Debris may include hot chunks of combustion by-products ejected from solid 

rocket motors or the fragments produced by an intercept event.  While systems utilizing 
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Global Positioning Satellite (GPS) are able to produce data sufficiently accurate to be 

used to determine position and motion of many larger objects, many objects are too light 

or small to carry the equipment necessary to support transmitting GPS derived metric 

data.    

In order to meet the radar data collection requirements, MDA developed the X-

Band Test Radar (XTR-1) with the intent to place the radar on a suitably sized ship.  The 

XTR-1 is a dual, X and S, band radar with an 11m dish antenna.  After the Pacific 

Tracker program was started, MDA/DTR decided to add the other Transportable 

Telemetry System (TTS-2) to Pacific Tracker.  TTS-2 is a duplicate of the TTS-1 on 

Pacific Collector, also with dual 7m dishes.   

B. PACIFIC TRACKER PROJECT 

1. Mission 

The mission of the Sea-Based Platform Product Office (SBP) is to maintain, 

operate, and develop sea-based platforms to support MDA flight test activities.  The SBP 

was initially formed in July 2007.  The first two platforms in SBP’s portfolio were the 

telemetry collection ship Pacific Collector and the Mobile Launch Platform (MLP).  The 

MLP is the ex-USS Tripoli, a former Iwo Jima class amphibious assault ship.  The 

primary function of the MLP is to serve as a launch platform for target missiles, similar 

to Scuds, for BMDS testing.  The MLP is operated as a live-aboard barge and is towed by 

the former fleet tug, Narragansett.  With the completion of the 24 August 2007 

Acquisition Strategy Panel (ASP), DTR assigned the development effort, Pacific 

Tracker, to the SBP.  Responsibility for the ship passed from the Radar Product Branch 

to the SBP. 

The initial tasking of the SBP was to finalize ship selection and convert the 

selected ship to accommodate the XTR-1 radar.  Once Beaver State was selected, the 

SBP had to complete five major efforts to convert Beaver State to Pacific Tracker.  The 

five major efforts in the conversion process are: 1) Ship reactivation; 2) Modification of 

the ship to host the primary sensors, the adjunct systems, and the respective operators; 3) 
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Installation and integration of the primary sensors and adjunct systems; 4) Development, 

installation, and certification of the communications system; and 5) Coast Guard 

certification.  This thesis is primarily centered on the utility of DoDAF for the ship 

modifications necessary to host the radar and the development of the communications 

system.  The five major efforts are described in more detail below. 

1.  Ship reactivation: Covers all actions to return the ship to sea-worthy 

condition.  Based upon the ASP decision, the ships considered for conversions were all 

U.S. government-owned and mothballed in the inactive fleet.  Mothballed is used here to 

describe measures taken to protect the ship and equipment from corrosion or 

deterioration.  At a minimum, the preservation measures needed to be removed and the 

equipment returned to operating condition.  Repairs would be needed to address 

deficiencies in the ship’s condition at the time of the mothballing and to address 

deficiencies resulting from deterioration that occurred while mothballed.  Part of the ship 

selection process took into account the overall condition of the ships. 

2.  Modification of the ship to host the primary sensors, the adjunct systems, 

and the respective operators:  The ship selected for conversion would require 

modifications to accommodate the primary sensors, XTR-1 and TTS-2.  Modifications 

necessary to support XTR-1 include: electrical distribution, a foundation for the radar 

antenna, and a control/computer room.  Because the TTS-2 had already been built and the 

XTR was being assembled, the first approach was to have the XTR and TTS programs 

develop respective interface control documents (ICDs). Then the ship modifications 

would be designed to match the ICDs.   

This was the approach taken for installing the TTS-1 temporarily on the MLP and 

then permanently on Pacific Collector.  The TTS was designed to be a self-sufficient 

system needing only a relatively flat piece of land or deck to sit on.  It had its own power 

system, SATCOM system, control room, and antenna base.  This was not the case with 

the XTR-1.  XTR-1 had requirements for power, SATCOM, control room, and antenna 

base.  The XTR-1 could not simply be bolted on the ship.  Significant changes had to be 

made to the ship to accommodate the XTR-1.   
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3.  Installation and integration of the primary sensors and adjunct systems:  

This phase is when the sensors are brought to the ship and installed.  It also includes the 

time necessary to restore the sensors to working condition once installed on Pacific 

Tracker. 

4.  Development, installation, and accreditation of the communications 

system:  Initially the communication system was seen to be part of the XTR; however, 

with the addition of the TTS-2, this effort shifted to SBP to work.  The initial concept 

primarily centered on test range communications and data transmission.  As requirements 

for test range communications and data transmission were developed, requirements 

necessary to support XTR and TTS operations and maintenance surfaced.  Accreditation 

of the communication system also became an issue because the Tracker had to interface 

with other DoD assets on the Global Information Grid (GIG).  

5.  Coast Guard (CG) certification: Prior to a ship being authorized to sail, it 

must be in a condition that meets Coast Guard regulations.  The CG certification process 

generally consists of a series of inspections by the CG or the American Bureau of 

Shipping (ABS).  “A tax-exempt non-governmental organization (NGO), ABS has been 

commissioned by the U.S. government and the USCG to act in many maritime matters 

that relate directly to the safety of life and property at sea” (ABS Fact Sheet, 2005). 

2. Organization   

The SBP at the start of the project consisted of two individuals: the government 

project manager and one contractor employee.  The project manager had experience with 

leading prior MDA test asset development efforts.  These previous efforts were focused 

on the development of an infrared (IR) imaging sensor and extensive modification of 

aircraft to host the new IR sensor.  The contractor employee, a retired Navy skipper, had 

extensive experience with ships.  The organization was typical of project management in 

that the Pacific Tracker Project Manager (PTPM) was not anybody’s supervisor and had 

almost no formal contractual control.  He was able to restrict the flow of money; 

however, that was only the coarsest form of control.  The PTPM provided funding 

directly to three organizations: Johns Hopkins University/Applied Physics Laboratory 
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(JHU/APL), NSWC Corona Division, and MARAD HQ.  The bulk of the funding, 

roughly 97%, went to MARAD.  MARAD and NSWC received funds via Military 

Interdepartmental Purchase Request (MIPR).  MDA had a contract with JHU/APL, and 

the PTPM was the task manager for that contract. 

 

 

Figure 6.   Organization of the Pacific Tracker and major sensors projects. 

The PTPM assigned JHU/APL to provide detailed engineering analysis, as 

needed, and to provide systems engineering to support to the Pacific Tracker 

development efforts.  The Radar Development Branch selected NSWC Corona to develop 

the communications system for the XTR-1 mission equipment.  Corona was experienced 

with integrating SATCOM with MDA test assets.  Corona had developed the SATCOM 

system linking TTS-1 and TTS-2 and successfully revamped the SATCOM on the MLP 

to name two projects.  MARAD was assigned to make recommendations for the ship 

selection; to re-activate the ship; to modify the ship; and to gain CG certification.  

3. Acquisition Approach 

MDA considered several approaches for acquiring a ship to become Pacific 

Tracker.  Among the approaches considered were a new acquisition—designing and 
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building a new special purpose ship; drawing a ship from the U.S. Inactive Reserve Fleet 

(which is also sometimes referred to as the MARAD option); or a lease arrangement with 

a ship owner/operator.  MDA/DTR considered designing and building a special purpose 

ship and quickly deemed the expected costs to be too high based upon a recent Navy 

contract award.  The Navy had recently selected the design and build new approach for 

its Cobra Judy replacement program.  In 2006, the Navy made a “$199M contract award 

for the design and construction” (VT Halter, 2006) of a new ship based upon the existing 

T-AGS 39 design.  The $199M price tag for the Cobra Judy replacement far exceeded 

MDA’s budget for Pacific Tracker.  MDA considered two options in more detail: 1) 

drawing a ship from the U.S. Inactive Reserve Fleet and 2) a lease arrangement with a 

ship owner and operator.  

The acquisition of Pacific Collector followed the approach of drawing a ship from 

the U.S. Inactive Reserve Fleet.  Given the success of Pacific Collector, MDA embarked 

on the same approach with Pacific Tracker.  While MARAD was conducting the initial 

assessment of available ships in the inactive reserve fleet for MDA, Edison Chouest (an 

offshore vessel services company) approached MDA with the Lease option.  Edison 

Chouest proposed to modify one of their vessels to support XTR requirements and then 

operate the ship for MDA under a ten-year lease.  Once MARAD had completed the 

initial assessment, MDA performed a business case analysis of the three options in the 

summer of 2007.  The results are shown in Table 5.  The Director, Test Resources 

presented these results to MDA’s Acquisition Strategy Panel (ASP) on 24 August 2007. 

 

Table 5.   Projected costs by FY for Pacific Tracker development and operation 

As shown in Table 5, MDA’s procurement group estimated MDA’s costs for the 

three approaches to develop and operate Pacific Collector.  Additionally, within the 

MARAD option, two different ships were considered.  DOBE estimated that the design, 
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conversion, and XTR integration would occur within FY08 and FY09.  These estimates 

allowed time for the sensor integration but did not include costs for the XTR integration 

or operation.  These costs were included when the ASP previously considered and 

approved the XTR program independent of ship platform.  The costs for the remaining 

years are projected maintenance, berthing, and operation.  The operational costs are based 

on eight data collection voyages.  The duration of each voyage was assumed to be 21 

days. 

MDA’s procurement group analysis determined that the New Ship approach was 

the most costly approach by a wide margin and supported DTR’s early rejection.  The 

Lease approach did not appear to offer any great advantage above the MARAD approach.  

The Lease approach had the higher initial cost, higher operational cost, and of course, the 

higher total cost.  The Lease option Edison Chouest proposed possibly offered the 

advantage of fixed, known costs with the contractor assuming the risk.  The fixed cost 

option was only possible if the requirements were fully known and not likely to change in 

a significant manner--an unlikely scenario for the Pacific Tracker project.  MARAD had 

concluded that two crane ships, Beaver State and Green Mountain State, were best suited 

to meet MDA requirements.  Beaver State and Green Mountain State were similar though 

not identical ships and either one could meet the MDA requirement to host the XTR.  The 

difference in projected cost for the conversion and activation phase of the program was 

driven by the difference between the physical conditions of the two ships.  Beaver State 

was judged by MARAD to be best in class.   

4. Technical Approach 

The technical approach for the Pacific Tracker program was largely determined 

by the acquisition decision to pull a ship from the inactive reserve and modify it to meet 

the requirements of hosting the XTR.  At the ASP, some discussion was given to the 

ability of candidate ships to host a TTS.  However, the ability to host the TTS was not 

identified as a formal requirement until after the ship selection.  The formal requirement 

at the time of the ASP was to find a ship with the size and electrical power generation 

capability to accommodate only the XTR. 
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At the time of the ASP briefing, the technical approach had four major steps.  The 

first step was for the XTR-1 developer, Massachusetts Institute of Technology Lincoln 

Laboratory, to produce an interface control document (ICD).  “MIT Lincoln Laboratory 

is a federally funded research and development center chartered to apply advanced 

technology to problems of national security” (MIT/LL, n.d.).  The second step was for 

naval architects, under contract to MARAD, to develop a design in accordance with the 

XTR-1 ICD.  The third step was for a shipyard to make the modifications to the ship.  

The fourth step was for the XTR to be integrated on the ship, once the shipyard work was 

completed.  As the program progressed, TTS-2 and the communications system were 

added to the effort.  The steps for TTS and the communications system followed a path of 

requirements definition, design, modification, and installation similar to XTR-1.   

The first step of developing the ICD was expected to be straight forward for the 

developer.  The XTR-1 was in a relatively advanced stage of development and it already 

was being fabricated.  The XTR-1 ICD was expected to describe the interfaces between 

the radar and the ship as well as identify other requirements for space, electrical power, 

and cooling for the radar.   

Likewise, the second step was expected to be straight forward for the naval 

architects to produce a design to host the radar.  It was envisioned that the naval 

architects would quickly produce a detailed design.  There were three major components 

of the design: the electrical system, structural modifications, and machinery 

(predominantly a chilled water system to cool the radar).  It was understood that the 

electrical system would have to be modified to allow the radar to draw power from either 

diesel generator.  Structural modifications that included building out rooms such as office 

spaces and control and computer rooms were expected to be relatively simple.  While a 

larger effort, even the structural modifications foundation for the XTR antenna was 

considered to be straight forward.  It was thought the design of chilled water cooling 

system was largely a matter of selecting the correctly sized commercial system. 

Once the modification design was complete, the third step was to compete the 

modification work among interested shipyards and have the winning shipyard perform 

the modifications.  The modifications would be coupled with dry-dock work in the 



 22

competitive package.  The dry-dock work would be routine items necessary to activate 

the ship and meet regulatory requirements.  After the shipyard completed the 

modifications and work in the dry-dock, the fourth step would be to install the XTR-1 on 

Pacific Tracker.  

5. Schedule and Milestones 

The initial schedule that was shown during the ASP briefing is shown in Figure 7. 

Figure 7 shows Pacific Tracker milestones in relation to upcoming FTGs.  FTG is the 

designation for flight tests of the Ground-based Midcourse Defense (GMD) system.  FTG 

scenarios include the Vandenberg to Kwajalein trajectories.  The first milestone is the 

authority to proceed with ship acquisition.  The date coincides with the ASP presentation 

on 24 August 2007. At that time, the XTR-1 schedule showed that the radar would be 

ready to install on the ship towards the end of FY 2008. The detail design work prior to 

entering into the shipyard was scheduled to begin September 2007 and run approximately 

six months to the end of February 2008.  This allowed only six months for MIT/LL to 

produce an ICD and for MARAD to produce the detailed design to modify the ship to 

allow it to accept the XTR.  The next six months were allotted to shipyard modifications 

of the vessel.  Then another six months were allotted for the installation of the radar on 

the ship.  After another month of sea trials, Pacific Tracker would be ready to support 

FTG-08.  
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Figure 7.   Schedule for the project presented at ASP by DTR 

6. Design Evolution History 

The design requirements for Pacific Tracker, and hence the corresponding design 

concepts, underwent significant changes as the project proceeded.  A few significant 

milestones in the program are used to capture the then current design requirements and 

design concepts at those particular junctures.  The first milestone will be the ASP 

meeting.  Subsequent milestones will be SRR, CDR, and contract award.  Between 

milestones, the design made significant changes due to requirement changes, improved 

understanding of requirements, and cost constraints.  

a. Acquisition Strategy Panel 

At the time of the ASP, MIT/LL had yet to develop its ICD.  There was 

sufficient understanding of the requirements for electrical power and physical size to 

select a ship.  However, those requirements were not sufficiently understood for the naval 

architects to begin a detailed modification design.  Several months after the ASP, two 

additional major requirements were added to the program.  First was the addition of TTS-
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2 and the second was for XTR-1 to operate throughout a flight without loss of data, even 

with a prime power causality.  The impacts of those requirements are discussed in more 

detail in the following section on the Systems Requirements Review.   

b. Systems Requirements Review 

At the SRR, options were presented for modifications to the ship to 

provide: mission equipment electrical power, MDA mission personnel berthing, TTS 

antenna placement, and the communications system.  In this thesis, the term “mission 

equipment” is used to denote the equipment associated with the XTR, TTS, and 

communications system.  Between the ASP and the SRR, there were two major changes 

to Pacific Tracker requirements.  The first was the addition of the TTS.  The second 

major change was the clarification of the requirement to supply reliable power to the 

mission equipment.  The power requirement was now to have the mission equipment, 

including the radar on UPS backup, sufficient to power the system for 30 minutes.  The 

addition of TTS to the ship added not only new requirements to support the installation of 

the TTS equipment but also placed additional demands on berthing, the communication 

system, and the electrical system.  While the addition of TTS drove changes to the 

electrical design, the requirement to supply reliable electrical power to the mission 

equipment was the biggest driver.  (The primary source of information for the systems 

requirements review section is the March 2008 Trade Studies presented by the PTPM at 

the SRR.) 

The overarching requirement for the electrical system is to reliably meet 

the mission equipment’s power demand throughout the flight event.  Prior to the addition 

of TTS, the XTR ICD indicated it would draw about 1280 kVA, including 

communications, when it was radiating at full mission load.  The TTS ICD indicated its 

load would be another 320 kVA.  The resulting total mission equipment load would be 

1600 kVA.  The power generation capability seemed to be more than enough to meet the 

mission equipment’s expected load.  
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XTR-1 1,265 kVA
TTS-2 320 kVA
Comms 15 kVA

1,600 kVA

System Total

Grand Total  

Table 6.   Power requirements based on XTR-1 and TTS ICDs  

Beaver State has the capability to generate 3900 kW.  She has two 750 kW 

steam turbine generators and two 1200 kW diesel generators.  After taking into account 

the ship’s expected load of about 600 kW, there would still be 3300 kW available to 

power the mission equipment.  The power generation capability for the generators is 

expressed in kW; however, the load is expressed in kVA.  A conversion is required to 

express the power and the load in the same units.  The MARAD electrical design 

engineer selected a power factor of 0.8.  Therefore, the 1600 kVA load converts to 1280 

kW.  The addition of TTS increased the mission equipment’s load by 25%.  However, the 

generation capability was well over two times the expected load. 

The “reliably…throughout the flight event” portion of the requirement 

produced a more significant impact than adding the TTS load.  “Throughout the flight” 

meant from shortly before the first launch until the last splash.  For ICBM intercept tests, 

this translates to a time period of about 30 minutes.  The intent was for XTR, TTS, and 

the communications system to remain fully functional, that is with no loss of data, for 30 

minutes even if the respective primary power source was lost.  MARAD developed three 

options to meet the power requirement:  1) Modify the switchboard so both diesel 

generators operate in parallel; 2) Add a third diesel generator; and 3) Add an 

uninterruptable power supply (UPS) sufficient to power all of the mission equipment for 

30 minutes of operations. 

Option 1, as shown in Figure 8, has the following features: 1) Lowest cost 

of the options considered; 2) If one steam turbine generator or one diesel generator fails 

(after missile launch), the UPS units will provide continuity of mission equipment power 

for 30 minutes; and 3) Failure of either a diesel generator or diesel generator switchboard 
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will not interrupt power to S and X-Band High Voltage Power Supplies (HVPS) and 

XTR Antenna Servo Motors.  The major disadvantage is that it did not meet 

management’s desire to have all the mission equipment backed up by a UPS.  

 

Figure 8.   MARAD’s power option 1 

Option 2, as shown in Figure 9, has the following features: 1) Failure of 

any diesel generator or diesel generator switchboard will not interrupt mission power.  

The remaining diesel generator can maintain mission power without having to rely on 

UPS units; 2) The mission power system is completely isolated from the ship’s power 

system.  Disruptions in the ship’s power system will not affect mission operations; and 3) 

According to MARAD, a 1640 kW diesel generator was currently available from another 

MARAD activity.  The disadvantages of this option are: 1) It is the most expensive of all 

the options; 2) It requires new auxiliary machinery room and associated support systems 

for the diesel generator installation and a new diesel generator switchboard; and 3) 

Additional engine room watch personnel would be required. 
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Figure 9.   Power option 2 

Option 3, as seen in Figure 10, has the following features: 1) Failure of 

any (or both) diesel generator will not interrupt mission power for a minimum of 90 

minutes, and 2) The mission power system is completely isolated from the ship’s power 

system.  Disruptions in the ship’s power system will not affect mission operations.  The 

disadvantages of option 3 are:  1) It requires installing a new diesel generator switchboard 

and Mission Switchboard, and four 400 kVA UPS units; and 2) Different voltages of the 

ship’s service power system, 450 V, and Mission power systems, 480 V, prevent the 

capability to parallel systems.  Significant modifications are necessary to permit 

paralleling to the ship’s service switchboard and SSTG governors; and 3) The UPS 

battery life expectancy will likely cause new batteries to be purchased every few years.  

DT management considered the power options and projected costs.  After 

some additional discussion, DT management decided to relax the requirement for 100% 

UPS backup for all mission equipment.  When the requirement was changed from 100% 
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UPS backup to 100% backup, option 1 became viable.  This option uses one of the diesel 

generators as the primary power source and the other diesel generator as the back up 

power source for the radar transmitters.  Additionally, option 1 uses UPS as the back up 

power source for the other mission equipment.  DT management directed the program to 

proceed with refining option 1. 

 

Figure 10.   SRR power option 3 

Options for berthing were also presented at the SRR.  There are not 

enough berthing rooms onboard the ship to provide every member of the ship’s crew and 

MDA mission crew with a private room.  If each member of the ship’s crew had a private 

room, there would only be enough state rooms to accommodate eight MDA personnel, 

not the currently expected 22–29 personnel.  MARAD developed three options to 

accommodate additional personnel.  The first option is to utilize the existing staterooms 

without building additional staterooms.  The second option is to install 24 new single 

staterooms and utilize six single staterooms currently existing within the ship’s house.  

The third option was to install 30 new single staterooms.  
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The first option is to use the existing 22 single and 21 double staterooms 

without building additional staterooms.  The ship’s crew requires 12 single staterooms for 

the licensed and senior unlicensed personnel.  For the remaining unlicensed personnel, 

they will be assigned to 14 double staterooms.  The remaining ten single and seven 

double staterooms would be assigned to MDA mission personnel.  This would allow 

MDA to place 24 personnel onboard.   

There are a number of issues associated with these limits.  The first issue 

is the use of only the existing staterooms severely constrains the staffing flexibility for 

both MDA and MARAD.  MDA will be restricted to only 24, just two more than the 

lower limit. The ship’s crew will be limited to 40. Previously, when Beaver State was 

active, she steamed with a crew of 39.  The size of the ship’s crew had yet to be 

determined.  The improved viewing, because the large cranes will no longer restrict the 

view from the bridge, may reduce the crew size by three, according to MARAD.  

However, the added MDA mission crew will likely increase the required number in the 

steward department.  These numbers do not account for gender.  For example, if there 

were seven males and seven females in the MDA crew whose status would normally 

place them in a double room, only one odd male or odd female could be berthed but not 

both.  The option of only using existing staterooms does have the advantage of having the 

lowest cost of the three options.    

The second option was to build accommodations on the main deck in front 

of the house.  These new accommodations would provide 24 new single staterooms for 

MDA mission personnel.  This option also called for MDA to utilize another six single 

staterooms in the house.  This would have allowed space for 30 MDA mission people and 

allowed the ship’s crew to reach a level of 35 before having to double bunk anyone.  This 

option met the requirements; however, it did place limits on MDA’s flexibility.  The issue 

with this option and the third option was cost.  MARAD’s cost estimate for building the 

24 new staterooms was $5M. 

The third option presented called for the building of 30 new staterooms for 

MDA mission personnel.  This would have provided MDA with enough berthing to meet 

its expectations and no one on the ship’s crew would have to double up.  There even 
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would have been some vacant rooms to allow for contingency or additional sensors.  This 

option would provide better living conditions for high ops tempo and would provide the 

most flexibility for staffing the ship and the MDA mission systems.  The down side was 

the cost.  By MARAD’s estimate, the incremental cost was only $500k more for 30 

staterooms over the 24 stateroom plan.  The recommendation was to go with option 3.   

The initial plan for the TTS-2 antenna installation was to place them on 

the hatch coamings in the open.  This concept was very similar to how the TTS-1 

antennas are mounted on Pacific Collector.  However, DT leadership clarified the TTS 

requirement to include radomes over the antennas.  Leadership mandated the use of 

radomes in order to improve the lifecycle maintainability of the TTS-2’s antennas.  The 

issue with the radomes was that nothing could be allowed to block visibility for the wheel 

house.  The visibility requirement is “…the view of the sea surface is not obscured 

forward of the bow by more than the lesser of two ship lengths or 500 meters (1,640 feet) 

from dead ahead to 10 degrees on either side of the vessel. Within this arc of visibility 

any blind sector caused by cargo, cargo gear, or other permanent obstruction must not 

exceed 5 degrees.” (Construction and Arrangement, 2004).  Even the introduction of the 

shortest feasibly sized radome would exceed the allowable limits of obstruction if placed 

on top of the hatch coaming. 

The TTS developer initially provided a radome design that called for a 

height of 42 ft.  With further discussions and analysis the TTS developer and the naval 

architect determined the maximum feasible height for the radomes to be 37 ft.  A height 

of 37 ft could be achieved; however, there would be regrets for the TTS operators.  Even 

so, the 37’ tall radomes placed on the hatch coaming would have blocked the view from 

the bridge.  Therefore, three options, in addition to the no radome option, were developed 

to explore methods to allow heights of 37, 39, and 42 feet.   

Three options were presented to meet the combined requirements for 

visibility from the bridge and protecting the antenna:  1) Limit the radomes to a height of 

37 feet; remove hatch coamings, and modify the ship’s main deck; 2) Limit the radomes 

to a height of 39 feet; raise the wheel house one level; and partially modify the ship’s 

deck; and 3) Raise the wheel house two levels; without modifications to the ship’s deck. 
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Figure 11.   TTS antenna configuration with 37 ft high radomes mounted on the main 
deck 

MARAD’s first option has the advantage of being the lowest cost option 

which would allow radomes of any size.  Nevertheless, it would call for an estimated 

$2.4M to remove the hatch coamings and build deck inserts strong enough to support the 

TTS antennas.  As shown in Figure 12, the front radome would still produce a partial 

obstruction.  This obstruction, however, would be within the allowable limits. The 

forward antenna was brought as far aft as possible to maintain a required 60 ft separation 

between antennas.  

The second option would allow a greater separation between antennas and 

a radome height of 39 ft.  It would have also only called for the removal of one hatch 

coaming and the corresponding deck insert.  However, it called for the wheel house to be 

raised one level, approximately 8 ft. This may have seemed to be the compromise option; 

however, it was the costliest of the three.  While it combined the advantages, higher 

radome height, and less steel work on the main deck, it also combined the cost of major 

steel work on the main deck and the cost of raising the wheel house. 
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Figure 12.   TTS antenna and deck configuration for option 2 

The third option allowed for the full sized radomes, 42 ft, and it avoided 

major steel work on the main deck.  No hatch coamings would have to be removed; 

however, the wheel house would now have to be raised two levels, or 16 ft.  The cost for 

option 3 was estimated to be $5M.  DT management directed that option 1 for the TTS 

antennas be implemented. 

 

Figure 13.   Option 3 with 42 ft tall radomes and antennas mounted on hatch coamings  

The XTR and the TTS have requirements to receive and transmit data.  

For example, both systems will require the ability to receive and send pointing data in the 

form of an inter-range state vector (IRV).  In addition, it is highly desirable to send 

processed data from the systems in real time as they track objects during the test event.  

Raise 1 

Raise 2 
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PTPM directed APL to conduct a study to determine the MDA mission requirements for 

communication.  This study did not address the communication equipment needed for 

ship operations. Their summary conclusion is shown in Table 7.  

 

Table 7.   APL summary conclusions for bandwidth requirements in kbs 

APL recognized that the communication traffic would change as the 

system progressed from one phase of the test cycle to the next.  The direction of the 

traffic, whether incoming or outgoing, needs to be considered along with the priority of 

the traffic.  The test event activity was split into four phases: Pre-Mission, During 

Mission, Post-Mission, and Pier Side.  The term During Mission refers to the time frame 

beginning roughly eight hours prior to the beginning of the launch countdown until 

several minutes after the flight test event.  Pre-Mission is the time frame between leaving 

the pier and the start of the During Mission phase.  Post-Mission is the time between the 

end of the test event and the ship arriving back at Portland.  Pier Side is the time when 

Pacific Tracker is berthed at home port.  Incoming traffic means the data flow from shore 

to the sensors.  Outgoing traffic means the data flow from the sensors to the shore.  APL 

used three levels of priority:  Critical, Medium, and Low.  Critical priority traffic means 

the traffic critically necessary to achieve the primary test event objectives, relative to the 
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XTR and TTS.  Examples of this type of traffic are the inter-range vectors used to cue 

sensor tracking.  Without these tracking cues, the ability of the XTR and TTS to 

autonomously acquire and track a target is not assured.  Medium priority traffic is needed 

to support a certain function.  For example, Medium traffic would be providing real time 

data, such as video from the booster sent via telemetry or XTR console display to the test 

range or other sites.  This could also include such general support as phone and fax 

traffic.  Low priority traffic is useful to support a certain function.  However, without this 

traffic, the function would still work.  For example, Internet access may fall into this 

category.  None of the sensors are dependent on the Internet to function correctly; 

however, access to the Internet for information may help the operations (Zheng, 2008). 

The existing communications equipment from TTS-2 includes three Fleet 

77 INMARSAT and one wideband Sea Tel 2.4 m dish.  The TTS had been configured so 

that the critical data had two paths: the Fleet 77 INMARSATS and the Sea Tel.  The 

medium and low priority traffic only followed over the Sea Tel.  While this configuration 

was sufficient for TTS alone, it did not allow enough bandwidth for the TTS and XTR 

critical data.  The PTPM presented three options to address the shortfall:  1) one Sea Tel 

and four INMARSATs; 2) two Sea Tel systems; 3) two Sea Tels and three INMARSATs.  

The first option called for purchasing additional Fleet 77 INMARSAT and integrating the 

one Sea Tel and four INMARSATs onto the Tracker.  Option 2 called for purchasing a 

second Sea Tel and installing only the two Sea Tels.  The third option called for the 

purchase of a second Sea Tel as in option 2; however, the three existing INMARSAT 

would also be installed as a tertiary backup for the systems.  DT management directed 

option 2 be pursued.  

c. Preliminary Design Review 

At the PDR, MARAD showed some further details on the designs 

presented at the SRR, except for the electrical design.  The general arrangement for the 

placement of XTR-1 and TTS-2 had not changed.  However, as MARAD’s naval 

architects refined the designs, additional questions surfaced.  Between the SRR and the 

PDR, the naval architects had taken a much closer look at the XTR-1 requirements for the 
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antenna foundation.  Significant amount of discussion between the naval architects and 

the XTR-1 developers ensued to better understand the stated requirements.  The naval 

architects initially approached the foundation design from a traditional mechanical load 

perspective, for example, determining what mechanical loads, weight, torque, and so 

forth must the foundation support.  However, the specifications MIT/LL had provided 

were in terms of stiffness, and in particular, required the foundation not to conduct 

vibration, which would excite the natural resonance frequency of the XTR-1 antenna 

pedestal.   

d. Critical Design Review 

During the progression from the SRR to the CDR, the power requirements 

became better understood and the power margin shrank.  The MARAD design team 

became more concerned about the margin.  MARAD completed a load analysis.  The 

load analysis determined there was still enough power; however, the predicted mission 

equipment load had significantly increased from the early indications.  The predicted 

mission equipment load had increased so much the design for the power system had to be 

changed.  The concept at the SRR was for the SSDGs to supply primary and backup 

power for the radar antenna servos and S and X band high power voltage power supplies.  

For simplicity in this section, the radar antenna servos and S and X band high power 

voltage power supplies are referred to as simply, “the radar.”  The other mission 

equipment, TTS-2; XTR-1 control; communications equipment; and mission support 

equipment (cooling water, HVAC, lighting, and so forth), would be powered by the 

SSTGs with backup power being provided by the UPS and the other SSDG.  (The 

primary source of information for the critical design review section is the Aug 2008 Post-

CDR briefing presented by the PTPM to DT management following the CDR.) 
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Figure 14.   One line diagram of the power generation and distribution system 
presented at the CDR 
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Radar 1,060 -
Technical 145 145
Utility 13 13

Total XTR-1 1,218 158

Technical 169 169
Utility 144 144

Total TTS-2 313 313

Chilled Water 658 434
HVAC 88 88
Diesel Load 104 -
Total Mission Support 850 522

2,381 993

System  Radar On 
Max kVA

XTR-1

Grand Total

TTS-2

Mission Support  

 Radar Off 
Max kVA

 
Table 8.   MARAD’s load analysis results 

At the CDR, it was clear that the expected loads for the other mission 

equipment were too large for the SSTGs to supply when the radar was operating.  The 

SSTGs could supply sufficient power to the other mission equipment when the radar was 

not in operation.  By operating, it is meant that generating RF energy would either be 

transmitted or converted into heat in devices known as dummy loads.  The cooling 

necessary while the radar is operating is too much for the SSTGs along with the other 

mission equipment.  When the radar is in operation, both SSDGs are necessary for power.  

One SSDG is required to power the radar and one SSDG is required to power the other 

mission equipment.  Now, when the power system is configured for radar operation, if 

the SSDG powering the radar fails, the other SSDG must shed the other mission 

equipment load and switch to power the radar.  The other mission equipment has to rely 

on the UPS for power.  In a similar fashion, when the power system is configured for 

radar operation and if the SSDG powering the other mission equipment were to fail, the 

other mission equipment has to rely on the UPS for power.  In this case, the other SSDG 

would continue to power the radar. 
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Two other significant changes were made to the power system design.  

The size of the UPSs were increased and the utility power for the TTS shelters was 

moved off the Mission Support UPS and over to the SSTGs.  The two 400 kVA UPSs in 

the SRR concept had to be increased to 750 kVA each.  The maximum load on the clean 

power UPS was expected to be 336 kVA while the maximum load on the mission support 

UPS had grown to 745 k VA.  The predicted load on the clean power UPS did not 

increase much from the SRR.  The predicted load on the mission support UPS had a 

significant increase.  In particular, the chilled water and HVAC were the biggest factors 

which drove the power requirements.  Both UPSs did not have to increase to the 750 

kVA size.  The clean UPS could have easily stayed at 400 kVA.  However, the decision 

was made to keep the UPSs identical with the expectation of reducing the cost of critical 

spares that must be kept onboard the ship.  One may note the total load is not evenly 

spread over the two UPSs.   

The load is not more evenly split because of the type of loads.  The 

compressors and other equipment on the Mission Support UPS are considered to be fairly 

noisy.  And, that equipment does not require clean power as the mission electronics will.  

The Mission Electronics UPS provides power conditioning for the equipment attached 

behind it from equipment attached on the front side.  It protects the Mission Electronics 

from noisy loads such as the radar’s high power voltage power supplies and compressors.  

This is why the TTS utility power was not shifted over to the Mission Electronics UPS 

even though there is more than enough margin left on the Mission Electronics UPS to 

accommodate the TTS utility power.  The TTS utility power was shifted off the Mission 

Support UPS because the predicted load on that UPS had grown so large.  The load on 

the Mission Support UPS provided motivation to move the TTS utility power off that 

UPS and because the noisy equipment described as TTS Utility could produce problems 

for the equipment powered by the other UPS.  Thus, the decision was made to instead 

shift the load in question to the SSTGs.   

This decision avoided the need to go to an even larger or third, smaller 

UPS.  The decision also, however, made the mission equipment more dependent on the 

SSTGs.  Table 8 indicates that both SSTGs are needed to fully supply utility power for 
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the TTS shelters.  This leaves the TTS Utility equipment without an instantaneous source 

of backup power.  Not providing TTS Utility equipment with instantaneous backup was 

judged to be acceptable for several reasons.  The loss of HVAC and lighting does not 

instantaneously stop the TTS data collection.  Depending on ambient temperature 

conditions, the TTS may be able to operate 30 minutes without HVAC.  Analysis also 

indicated that the ship’s crew would be able to shed enough of the ship’s load to allow 

the TTS utility equipment to come back on line prior to degradation of the data 

collection.  Because of the conservatism in calculating the predicted load, the second 

SSTG may not actually be needed. 

No new designs for the crew berthing were presented.  After the SRR, 

MARAD evaluated several other options for adding additional rooms.  None of the 

options resulted in a significant cost savings over what had been considered at the SRR.  

The number of staterooms for the MDA mission crew did not change; however, it was 

determined that three of the rooms that had been counted as single, because of how they 

had been previously used, were actually double staterooms.  Therefore, the allowable 

number of MDA mission personnel increased by three and now stood at 27, just two less 

than the stated requirement of 29. 

e. Contract Award 

The work package in the bid request was consistent with the design at 

CDR.  Only one bid was received.  Because the cost of the bid was much higher than 

expected, the work package was reduced to fit into available funding. Of the items 

discussed in this thesis, the major design change was to place the TTS antennas on top of 

the hatch coamings.  Several months after the shipyard work began, additional funding 

was identified, and the contract was modified to revert to the TTS placement per the CDR 

design. 
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III. REVIEW OF DODAF  

A. INTRODUCTION 

This chapter discusses the Department of Defense Architecture Framework 

(DoDAF).  Except as otherwise cited, all quotes and figures in this chapter are taken from 

the DoD Architecture Framework Version 1.5 Volume I: Definitions and Guidelines 23 

April 2007.  The term architecture is in common usage usually applies to the structure or 

appearance of a building.  Because architecture is applied to more than buildings, it is 

important to establish what is meant by architecture.  Architecture, in this paper, is the 

“structure of components, their relationships, and the principles and guidelines governing 

their design and evolution over time” (DoDAF Version 1.5 v I).  With this definition, the 

architecture still applies to the form and function of buildings and also to such diverse 

entities such as software, organizations, and military systems.  The Defense Science 

Board has determined that standardized architecture descriptions are vital for ensuring 

interoperable and cost effective military systems (USD(A&T), ASD(C3I), J6, 1997).  

“An architecture description is a representation of a defined domain, as of a current or 

future point in time, in terms of its component parts, how those parts function, the rules 

and constraints under which those parts function, and how those parts relate to each other 

and to the environment.” (DoDAF Version 1.5, v I)   

Interoperability describes how well entities function and work together.  More 

formally, interoperability is defined as “The ability of systems, units, or forces to provide 

data, information, materiel, and services to and accept the same from other systems, units, 

or forces and to use the data, information, material, and services so exchanged to enable 

them to operate effectively together” (DAU Glossary).  As competition for resources and 

complexity of systems increases, so does the need to make sure all of the pieces function 

and work together.  The probability of extraneous or poorly integrated components 

increases with the system’s complexity.  The DoD can ill afford the cost of inefficiencies  
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produced by extraneous or poorly integrated components.  To help ensure interoperable 

and cost effective military systems, the DoD has established DoDAF to describe DoD 

system architectures. 

The DoDAF is an evolution of the 1997 Command, Control, Communications, 

Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR) Architecture 

Framework.  The DoDAF’s purpose is to provide guidance for describing warfighting 

operations and business operations and processes, not just C4SIR systems.  The DoDAF 

does not provide guidance on how to construct or implement a specific architecture or 

how to develop and acquire systems.  The framework provides rules, guidance, and 

product descriptions for developing and presenting architecture descriptions.  The 

principal objective of the framework is to make sure architecture descriptions of DoD 

systems can be related and compared throughout DoD, across service and even multi-

national boundaries.  Common principles, assumptions, and terminology address this 

objective.  The DoDAF specifies three views that combine to describe the architecture.  

The three are Operational View (OV), Systems View (SV), and Technical Standards 

View (TV).  Figure 15 (DoDAF Version 1) illustrates the relationships between the three 

views. 

 

Figure 15.   Interrelationships among DoDAF views 
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B. OPERATIONAL VIEW 

The OV is a description of the mission, warfighting, and other entities that need to 

be supported by the system.  It describes what is going on with the system in the field.  

The OV contains textual and graphical products that identify the elements, assigned 

operations, and information flow between elements.  This view reveals requirements for 

capabilities and interoperability.  OV descriptions are useful for DoD wide assessments 

to examine business processes, technology insertion, or doctrinal and policy implications, 

to name a few. 

Usually the OV of a system is doctrine-driven.  However, outside forces can 

cause a system or organization to operate in a manner inconsistent with doctrine.  In these 

cases, the OV can be very useful to determine if doctrine changes are in order or if the 

root cause is some other factor such as lack of supporting infrastructure or information.  

Ideally, an OV is independent of materiel.  However, new technologies may influence or 

push elements, assigned operations, and information flow between elements.  For this 

reason, some high-level SV products or data elements may be needed to support 

information in the OV products. 

C. SYSTEMS VIEW   

The SV describes the existing and future systems and physical interconnections 

that support the mission documented in the OV.  As used in DoDAF, a system is defined 

as “any organized assembly of resources and procedures united and regulated by 

interaction or interdependence to accomplish a set of specific functions” (DoDAF 

Version 1.0).  The SV is used to address specific systems.  This can include current, 

developing, or conceptual technologies, depending on the purpose for developing the 

architecture.  The level of detail in the SV will depend on the purpose for developing the 

architecture.  Architectures are developed for a variety of reasons.  DoDAF users may 

develop Systems Views to describe the system’s current state, to assist in transitioning to 

a new state, or to analyze future options.   
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D. TECHNICAL STANDARDS VIEW 

The DoDAF defines TV as the smallest set of rules overarching the interaction, 

interdependence, and arrangement of system parts or elements.  This view is used to 

ensure that a system meets particular operational requirements.  The TV provides the 

technical guidelines on which the engineering specifications are based, products are 

developed, and common building blocks are recognized.  This view additionally 

augments the SV with forecasts of standard technology evolution. 

E. PRODUCTS 

The DoDAF also defines 29 architecture products, which are organized into All 

Views, OV, SV, and TV.  Figure 16 provides a list of architecture products (DoDAF 

Version 1.5).  The DoDAF Version 1.5 also provides specific guidance on which 

architecture products are applicable for various uses of architecture descriptions.  This is 

shown in Table 2 (DoDAF Version 1.5). 
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Figure 16.   DoDAF Products 
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Figure 17.   Architecture Products and their Applicability 

F. DODAF SUMMARY 

Architecture is the “structure of components, their relationships, and the 

principles and guidelines governing their design and evolution over time.”  An 

architecture description is a representation of a defined domain, as of a current or future 

point in time, in terms of its component parts, how those parts function, the rules and 

constraints under which those parts function, and how those parts relate to each other and 

to the environment.”  To help ensure interoperable and cost effective military systems, 

the DoD has established DoDAF to describe DoD system architectures.  The DoDAF is 

an evolution of the 1997 (C4ISR) Architecture Framework.  The framework provides 

rules, guidance, and product descriptions for developing and presenting architecture 

descriptions.  The DoDAF specifies three views that combine to describe the architecture.  

The three views are: Operational View (OV), Systems View (SV), and Technical 

Standards View (TV).  Usually the OV of a system is doctrine-driven.  The SV is used to 
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address specific systems.  Architectures are developed for a variety of reasons.  DoDAF 

users may develop Systems Views to describe the system’s current state, to assist in 

transitioning to a new state, or to analyze future options.  The DoDAF defines TV as the 

smallest set of rules overarching the interaction, interdependence, and arrangement of 

system parts or elements.  The DoDAF also defines 29 architecture products, which are 

organized into All Views, OV, SV, and TV.  It is intended to allow architecture 

descriptions of DoD systems to be related and compared throughout DoD, across service 

and even multi-national boundaries.   
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IV. ANALYSIS OF THE APPLICABILITY OF DODAF TO THE 
PACIFIC TRACKER CONVERSION 

A. INTRODUCTION 

In this chapter, the utility of applying DoDAF to the PT program is analyzed.  An 

architecture for the PT is described, and the possible impact of the architecture on the 

course of the program is considered.  The purpose of the PT is to fill radar gaps in a wide 

variety of MDA flight tests across the Pacific.  The effort to convert a ship to host an 

instrumentation radar and telemetry system was conducted without the use of DoDAF.  In 

this chapter, an architecture that could have been produced and utilized to support the 

conversion effort is described.  The PT architecture consists of nine DoDAF data 

products.  The data products are as follows: AV-1, OV-1-5, SV-1, 2, and 6. Each of these 

data products is subjectively assessed for possible impacts on the program’s course. 

B. SELECTED BEAVER STATE CONVERSION DODAF PRODUCTS  

1. All View-1 Overview and Summary Information 

AV-1 is a text document used to provide information: 1) to identify the project; 2) 

the scope of the architecture; 3) its purpose and viewpoint; 4) its context, and 5) the tools 

and file formats used.  AV-1 for the conversion is provided as a PowerPoint slide in 

Figure 18. 
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AV-1 Overview and Summary Information

• Architecture Project Identification
– Name: Beaver State conversion to Pacific Tracker
– Architect: Mike Lash
– Organization Developing the Architecture: MDA/DTR Sea Based Platforms
– Approval Authority: TBD
– Date Completed: Version 1.1 19 May 2009
– Level of Effort and Projected Costs to Develop the Architecture: 200 hours

• Scope: Architecture View(s) and Products Identification
– Views and Products Developed: AV 1; OV 1-5, SV 1-2, 6
– Time Frames Addressed: Current and End State
– Organizations Involved: MDA/DTR, MARAD HQ, MARAD Western Region, MIT/LL, WSMR, MDO, 

JHU/APL, Interocean American Shipping (IAS), NAVAIR, NSWC-Corona
• Purpose and Viewpoint

– Purpose, Analysis, Questions to be Answered by analysis of the Architecture: 
– Assess whether incorporating DoDAF would have improved the way the project was done.
– What DoDAF products might have been produced to support the project? 
– How may have the DoDAF methodology changed the way the project was done? 
– Would the DoDAF methodology have been useful to the project or be useful to future MDA test asset 

development projects? 
– From Whose Viewpoint the Architecture is Developed: Program Manager/ Systems Engineer

• Context
– Mission: Conversion of Beaver State to Host XTR-1 and TTS-2
– Doctrine, Goals, Vision: Produce a cost effective range instrumentation ship which will reduce BMDS 

dependence on land based radars
– Rules, Criteria, and Conventions Followed: Must be compatible with other range assets 
– Tasking for Architecture Project and Linkages to Other Architectures: None

• Tools and File Formats Used: Microsoft Office 2003 

 

Figure 18.   Pacific Tracker Overview and Summary Information 

2. OV-1 High Level Concept Description 

OV-1 provides a graphical high level description of the concept.  As shown in 

Figure 19, the Pacific Tracker is designed to: collect and record X & S band radar data 

and S band telemetry data on BMDS flight test events; send and receive data via 

SATCOM to and from other test participations; and to operate in the BOA.  The graphic 

shows the XTR-1 antenna mounted behind the house and the twin TTS-2 antennas 

mounted in front of the house.  The graphic depicts the two sensors collecting data on an 

interceptor and target missile.  Also, as depicted other test participants may be other sea 

base systems, airborne sensors, and land-based systems. 
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OV-1 High Level Concept Description

• The Pacific Tracker is designed to
– Collect and record X & S band radar and S band TM on BMDS flight test 

events
– Send/receive data real time via SATCOM to/from other test participants
– Operate from the broad ocean area (BOA)  

Figure 19.   Pacific Tracker High Level Concept Description 

3. OV-2 Operational Node Connectivity 

OV-2, in Figure 20, provides a description of the operational node connectivity.  

A drawing of the physical system passing data to actors who are part of the test event is 

used.  It seems that using such a drawing is a poor practice.  The drawing can add to the 

confusion caused by having a physical system, the ship, the XTR-1, and TTS-2, called 

the Pacific Tracker; a project named Pacific Tracker; and a ship named Pacific Tracker.  

In the early phases of a test event, the physical system is not being used to exchange 

information with the Test Resource Manager (TRM).  Test planners with the Pacific 

Tracker program will be exchanging information with the TRM by standard methods of 

business communications, for example, email and phone conversations. 
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The upper part of Figure 20 is taken from MDA Directive 3002.03 dated 15 

January 2009.  It shows the five phases of a BMDS test event: 1) Requirements, 2) 

Planning and Design, 3) Readiness, 4) Execution, and 5) Analysis and Reporting.  In the 

first three phases and the first part of the fourth phase, the information flowing through 

the TRM to the Pacific Tracker program is data requirements, test event description, and 

status.  Questions about capabilities and status will also flow to the PT program.  Often, 

capability questions will start with “Can you…” or “What if…”  The information that 

will be exchanged between the Pacific Tracker program and the test event via the TRM 

will tend to become more detailed as time progresses.  The initial information will start 

with general information about data requirements and general information on the what, 

where, and when of the test scenario.  As the level of detail of the data collection 

requirements and scenario information increases, so too will the level of detail in the 

plans the PT program provides back to the test event via the TRM.  During the first three 

phases and the first part of the fourth phase, the PT system will not be used to support the 

test event. 
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OV-2 Operational Node Connectivity 
Description

• BMDS Test Events progress from start to completion through the 
five phases 

• The PT program supports BMDS Test Event through all five phases
• The PT system supports the Execution phase

Flight
Test Event

 

Figure 20.   OV-2 Operational Node Connectivity Description  

For the design of the PT system, the node connectivity of the earlier phases is not 

as important as the node connectivity when the PT system is used.  Current planning calls 

for the Pacific Tracker system to begin supporting a test event towards the later part of 

the fourth phase, Execution.  A dockside communications demonstration is expected to 

be generally the first time the system will be used to support a given test.  Then, 

sometime after the communications demonstration, the system will be put to sea.  

However, depending upon the distance between test support positions and the time 

between test events, the system may already be at sea during the first communications 

demonstration.  The communications demonstration not only demonstrates that the 

communications links for the live flight test are operational; it also demonstrates the 

participant systems’ ability to process simulated data. 
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The live flight test is depicted by the maroon star in Figure 20 labeled “Test 

Event.”  For purposes of this thesis, the live flight test is the time that the missiles are in 

flight.  During the live flight test, test data and voice communications will be exchanged 

between the test event via the range and the PT program using the PT system in real time.  

Figures 21 and 22 depict the node connectivity for test data and for voice communication, 

respectively.  Figure 21 is the OV-2 that depicts the operational node connectivity for 

digital data passed between the electronic systems.  Figure 22 is the OV-2 that depicts the 

operational node connectivity for voice communications. 

Figure 21 shows connectivity between the range and the two sensors, XTR-1 and 

TTS-2.  There is also connectivity between the sensors and the Pacific Tracker Lead 

(PTL) Situational Awareness Display (SAD).  The type of information sent from the 

range to the sensors is the countdown clock and track data on selected test objects.  Track 

data on the objects being tracked by the sensors are sent to each other and the range.  

Other selected data collected by the sensors are also sent to the range.  The sensors will 

also send track data to the PTL SAD along with other real time data to keep the PTL 

advised of the sensors’ respective status. 
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OV-2 Operational Node Connectivity 
Description Test Event Data

Test Object(s) Position(s)
Radar Display Data

Test Object(s) Position(s)
Real Time TM Data

Countdown Clock
Test Object(s) Position(s)

Test Object(s) 
Position(s)

Test Object(s) Position(s)
Radar Display Data
Mode
Antenna Position

Test Object(s) Position(s)
Radar Display Data
Antenna Position

 

Figure 21.   OV-2 Operational Node Connectivity Description Test Event Data 

In addition to digital data passed between electronic systems, verbal 

communications will occur between individuals participating in the mission.  Figure 22 is 

the OV-2 description for the verbal node connectivity during the test event.  There will be 

other voice nets onboard and off board than what is shown in Figure 22.  Figure 22 shows 

the primary voice nets.  The intent is to have the PTL be the primary human interface 

with the range officer.  One reason to do this is to reduce the task loading on the 

respective sensor leads.  It is also intended that only one person, the PTL, is providing 

direction, requests, and questions to the ship’s master. 
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OV-2 Operational Node Connectivity 
Description Test Event Voice

Physical ship

 

Figure 22.   OV-2 Operational Node Connectivity Description Test Event Voice 

4 OV-3 Operational Information Exchange Matrix 

OV-3 is a tabular representation of operational information exchange along the 

need lines as depicted in OV-2.  Figures 23 and 24 present more detailed listings of 

information exchanged between nodes and some information on what the receiving node 

does with the information.  The format for Figures 23 and 24 was taken from Maj Hartt’s 

executive seminar on DoDAF (n.d.).  DoDAF 1.5 volume II provides an OV-3 template 

which allows for more details to be provided in the matrix.  However, Maj Hartt’s 

template addresses the key needs associated with the PT system (DoD Architecture 

Framework Executive Seminar, n.d.).   
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OV-3 Operational Information Exchange Matrix
Test Event Data

Need         
Line

Information 
Exchange

Sending 
Node

Sending 
Activity

Receiving 
Node

Receiving 
Activity Type

Range to PT Countdown 
Clock Range

Syncing 
Countdown 
activities to 
countdown 

clock

PT 
Cueing for 

mission 
execution

Digital

Range to XTR-1 
& TTS

Test Object(s) 
Position Range

Processing 
position 

information 
from various 
sources and 

disemenation

XTR-1, TTS

Cueing for 
pointing 

antennas and 
setting range 

gate

Digital/ 
Interstate Range 

Vector

XTR-1 & TTS to 
range

Test Object(s) 
Position XTR-1 & TTS 

Processing 
position 

information 
from XTR-1 & 

TM and 
disemenation

Range

Processing 
position 

information 
from various 
sources and 

disemenation

Digital/ 
Interstate Range 

Vector

XTR-1 to PTL 
SAD

XTR-1 mode, 
antenna 

position, display 
data

XTR-1 XTR-1 operation PTL SAD Situational 
awareness Digital

TTS to PTL SAD
TTS antenna 
position, TM 

data
TTS TTS operation PTL SAD Situational 

awareness Digital

XTR-1 to Range Radar display 
datat XTR-1 XTR-1 operation Range Situational 

awareness Digital

TTS to Range Processed TM 
data TTS

TTS operation 
and data 

processing
Range Situational 

awareness Digital

 

Figure 23.   OV-3 Operational Information Exchange Matrix with Test Event Data 
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OV-3 Operational Information Exchange Matrix
Test Event Voice

Need         
Line

Information 
Exchange

Sending 
Node

Sending 
Activity

Receiving 
Node

Receiving 
Activity

Type

PTL to RO Tracker Status PTL

Collect and 
disseminate 

Tracker (XTR-1, 
TTS, ship, and 
comm status)

RO

Collect and 
disseminate 
participant 

status

Voice, external 
range net

RO to PTL Range Count RO
Conduct 

Countdown PTL

Execute mission 
plan or make 
adjustment 
accordingly

Voice, external 
range net

PTL to Ship's 
Master

Request 
Heading, 

Speed, Power 
Transfer, Status, 

Radiate

PTL
Execute mission 
plann or make 

adjustment
Ship's Master

Approve and 
implement or 

disapprove and 
explain

Voice, internal 
phone

Ship's Master to 
PTL

Acknowledge 
Heading, 

Speed, Power 
Transfer.  
SOLAS 

information

Ship's Master

Adjust heading 
and speed, 
coordinate 

power transfer, 
stauts and 

SOLAS

PTL
Inform TTSL & 

XRTL
Voice, internal 

phone

PTL to XTRL
Changes to 
Heading, 

Speed, Power
PTL

Disseminate 
changes to 

heading speed, 
power

XTRL
Respond 

accordingly
Voice, internal 

net

XTRL to PTL

Request 
Heading, 

Speed, Power 
Transfer

XTRL
Execute mission 
plann or make 

adjustment
PTL

Decide to relay 
to ship's master 

or not

Voice, internal 
net

PTL to TTSL
Changes to 
Heading, 

Speed, Power
PTL

Disseminate 
changes to 

heading speed, 
power

TTSL
Respond 

accordingly
Voice, internal 

net

TTSL to PTL Request 
Heading, Speed TTSL

Execute mission 
plann or make 

adjustment
PTL

Decide to relay 
to ship's master 

or not

Voice, internal 
net

 

Figure 24.   OV-3 Operational Information Exchange Matrix with Test Event Voice 

5 OV-4 Organizational Relationships 

If DoDAF had been used, it is likely that the current and end state organizational 

relationships would have been considered.  The organizational relations evolved over the 

course of the program.  To keep the architecture description current, OV-4 may have 

been updated from time to time.  Here, OV-4 is produced relative to two junctures in the 

program: the ASP and the shipyard contract award.  Figure 25 shows the organizational 

relationships at the time of the ASP.  Figure 26 shows the relationships at the time of the 

contract award.  OV-4 descriptions are also produced for possible end state 

configurations.  Figure 27 reflects possible overall program relationships, and Figure 28 

shows possible relationships during flight test operations on the ship. 
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Figure 25 shows the relationships between the three branches, also called product 

offices, within the Test Resource Infrastructure Division (DTRI) involved with the 

Pacific Tracker program, Flight Safety and Telemetry, Sea-Based Platforms, and the 

Radar Development Branches.  At the time of the ASP, the TM and Flight Safety branch 

had already developed TTS-1 & 2.  This branch also oversaw the TTS-1 operations on 

the Pacific Collector and TTS-2 operations on land.  The TTS was developed and 

operated by a group from WSMR. WSMR had selected NSWC-Corona to develop and 

operate its SATCOM system.  The SBP Branch was charged with the responsibility to 

select and modify a ship to meet XTR-1 requirements.  MARAD was the executing agent 

for SBS.  MARAD Western Region, at the direction of MARAD HQ, engaged a firm, ICI 

and its sub contractor MDO, to perform the naval architecting.  MIT/LL was still in the 

process of developing the XTR-1 for the RD Branch.  The RD arranged for the targets 

group from NAVAIR, Naval Air Station, Pawtuxet River to be the EA for the radar 

operation through its contractor Computer Sciences Corporation (CSC).  It was planned 

for CSC to provide the permanent crew for the XTR-1.  The RD branch also went to 

NSWC Corona group to develop and operate the STACOM system.  At the time of the 

ASP, the three branches were organizationally on the same hierarchical level; however, 

SBP was tasked to accommodate RD/XTR-1 requirements and soon after the ASP, 

TM&Safety/TTS requirements were added to the tasking. 
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OV-4 Organizational Relationships
Development

(ASP Aug 2007)

 

Figure 25.   OV-4 Organizational Relationships August 2007 

By the time of the shipyard contract award, the hierarchy among the DTRI 

branches had changed.  Figure 26 reflects the organization at the time of the shipyard 

contract award.  Most of the organizations were still involved; however, there were 

several significant changes.  The TM/Safety Office was brought within SBP so that the 

vessels and on board instrumentation would have common management within DTRI.  

SBP also took over responsibility for the communications system and brought the Corona 

group within the SBP purview.  MARAD was able to reduce one contract by moving the 

Naval Architects subcontract under IAS.  By the time the contract was awarded, SBP was 

also assigned the lead systems engineering role for the Pacific Tracker program, a 

significantly different role than modifying a ship to meet XTR-1 requirements.  
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OV-4 Organizational Relationships
Development 

(Shipyard contract award Jan 2007)

 

Figure 26.   OV-4 Organizational Relationships January 2009 

Once XTR-1 development is completed, current plans call for responsibility for 

XTR-1 to be brought within SBP, just as the TM/Safety Office was brought within SBP 

so that the vessels and on board instrumentation would have common management within 

DTRI.  As shown in Figure 27, a possible end state is for the SBP office to be relative to 

only the Pacific Tracker program.  Organizational relationships are not shown for the 

other systems: Pacific Collector, KMRSS/Worthy, and the MLP, within SBP.  Figure 27 

also shows how SBP will have to interface directly with at least five different 

organizations in order to manage the Pacific Tracker program. 
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OV-4 Organizational Relationships
Possible End State Pacific Tracker

 

Figure 27.   OV-4 Organizational Relationships, Possible End State Pacific Tracker 

As part of the management of the Pacific Tracker program, the organization 

relationships onboard Pacific Tracker when at sea also needs to be considered.  Figure 28 

shows a possible configuration for the system at sea.  While MARAD and NAVAIR will 

not disappear while Pacific Tracker is at sea, their roles will become more indirect, very 

much like SBP.  It is not that the structure shown in Figure 27 goes away.  It is that only a 

subset of the actors relative to the overall program goes to sea.  The PTL will have more 

direct contact with the Range than she will have with the SBP.  The thought behind 

Figure 28 is that the PTL will be responsible for top level direction and coordination of 

the XTRL, TTSL, communications, and the ship.  To this end, the PTL is in the 

leadership position over the Pacific Tracker system and people deployed for the flight 

test.  The ship’s master is shown in a subordinate role to the PTL in relation to flight test 

support.  The intent is to reflect the overall mission of flight test support.  The master has 

supremacy in matters related to Safety of Life at Sea (SOLAS) and the safety of Pacific 

Tracker.   
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OV-4 Organizational Relationships
Possible End State Pacific Tracker 

(Flight Test Operations)

 

Figure 28.   OV-4 Organizational Relationships, Possible End State Pacific Tracker 
(Flight Test Operations) 

6 OV-5 Operational Activity Model 

The next view is OV-5, Operational Activity Model.  The model shown in Figure 

29 closely matches the example in Maj Hartt’s DoDAF executive seminar presentation 

(n.d.).  In his example, Maj Hartt was using an aerospace operations center (AOC) as an 

example.  On first consideration, a missile range instrumentation ship does not resemble 

an AOC in form or function.  However, in terms of the process, there is much overlap.  

Both the AOC and test assets can go through a planning – execution - maintenance cycle.  

The first step is to obtain information necessary for planning.  Two general types of 

information entering the program are shown at the top left: Requirements and Test Event 

Information. 
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The requirements are listed first. The second type of information is test event 

related information.  Requirements may be data collection requirements or regulatory 

requirements.  Data collection requirements will, in part, describe what data will be 

collected on which test objects, for example.  Regulatory requirements are laws, licenses, 

and restrictions applicable to any part of the Pacific Tracker operation.  Test information 

is any information that may affect planning.  Test information may or may not be directly 

related to the flight test.  For example, information on launch windows is directly related 

to the test.  Weather information, while not directly related to the test, can certainly affect 

data collection plans. 

The BMDS test support planning group will take this information and produce a 

plan for the BMDS test execution group to utilize in order to conduct the mission.  The 

planning group will also pass along other relevant information to the test support.  The 

execution cell will support the test in accordance to the accepted plan.  The execution 

group will provide reports and data outside of the PT.  That group will also provide 

information to the maintenance group on the performance of the various systems.  The 

maintenance group will provide information on the condition of the PT.  This generic 

scenario can be applied to TTS, the radar, and even the ship.  It has been my experience, 

depending on the level of specialization required, that the individual may find herself 

operating in one or more of the identified groups. 
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OV-5 Operational Activity Model

 

Figure 29.   OV-5 Operational Activity Model 

Another example of an operational activity model is shown.  Figure 30 illustrates 

some of the activities associated with execution during the actual test event.  The time 

period covered in this mode may range between 5 hours to 36 hours.  The starting event 

is the start of the count and the receipt of the quick look report is used as the terminating 

event.  The systems leads will ready their respective systems and provide reports to the 

PTL.  The PTL will in turn provide these status reports to the range on a predetermined 

schedule that is usually called out in the script for the count down activities.  Depending 

on the status of the various test participations, the range will have a decision to make on 

adjusting the count or proceeding as scheduled.  The launch begins the data flow to the 

PT and other systems involved with the flight test.  Pointing information in the form of 

inter range state vectors will flow to the radar and TM systems.  The instrumentation 

leads with then attempt to establish track on their respective items of interest as 

established by the data collection plan.  Once the systems are in track and collecting data, 

the systems will flow pointing information to each other and back to the range.  The 

activity of collecting, recording, flowing data will continue until loss of signal (LOS).  
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After the data collection has ended, the execution team will produce a quick look, or 

multiple quick look reports.  Reporting times can vary from program to program.  The 

initial report, usually provided within an hour, is a qualitative assessment of how the 

system performed.  Specific data products are requested to support the Quick Look 

Report, which is generally due within the first 24 to 48 hours. 

OV-5 Operational Activity Model
(Execution)

 

Figure 30.   OV-5 Operational Activity during test execution 

7 SV-1 System Interface Description 

OV-2 provided a description of nodes or parts of the system that are connected to 

other parts of the system.  SV-1 System Interface Description is found in Figure 31.  It 

depicts two types of interfaces, voice and data.  Voice interfaces are used between 

persons on Pacific Tracker and person(s) on the range.  It also indicates data interfaces 

between systems on Pacific Tracker and the range.  As shown in Figure 31, the XTRL, 

the TTSL, and the PTL will have voice communications amongst themselves and the 

range.  In addition, the ship’s master will have voice communications with the PTL.  The 
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XTR-1, TTS, and the range will be connected in such a manner as to allow the 

transmission and receipt of data to and from each other.  The PTL Situational Awareness 

display is able to receive data from XTR-1, TTS, and the range. 

SV-1 System Interface Description (Test Event)

 

Figure 31.   SV-1 System Interface Description  

8. SV-2 Systems and Services Communications Description and SV-6 
Systems Services Data Exchange Matrix 

In Figure 32, SV-2, a different graphical depiction is used to provide more 

detailed information on the communications systems used to connect people and systems.  

Figure 32 in and of itself does not provide much additional data over what was depicted 

in SV-1, Figure 31.  The SV-2 produced must be coupled with SV-6, Figure 33, to get 

more detailed information on the communications services.  The SV-6 matrix contains 

information on the medium, bandwidth, and data format.  Both of these products are 

capable of showing more information on the communications system than what is 

presented in this thesis.  These products were intentionally left underdeveloped for 

reasons that will be discussed in the next section of this chapter. 
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SV-2 Systems and Services 
Communications Description

 

Figure 32.   SV-2 Systems and Services Communications Description 
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SV-6 System Services Data Exchange Matrix         

6LVOIPRequest StatusTTSLRP

3LVOIPRequest StatusXTRLRP

2LVOIPRequest StatusPTLRP

11LIP NetworkIRVRSXTR-1

9HIP NetworkTM DataPTL SATTS 

13LIP NetworkIRVPTL SATTS 

16LIP NetworkIRVXTR-1TTS 

14LIP NetworkIRVRSTTS 

10HIP NetworkTM DataRSTTS

6LVOIPProvide StatusRP TTSL

5LVOIPProvide StatusPTLTTSL

8LIP NetworkRADAR DataPTL SAXTR-1 

12LIP NetworkIRVPTL SAXTR-1 

16LIP NetworkIRVTTSXTR-1 

7LIP NetworkRADAR DataRSXTR-1 

3LVOIPProvide StatusRP XTRL

4LVOIPProvide StatusPTLXTRL

4LVOIPRequest StatusXTRLPTL

2LVOIPProvide StatusRP PTL

1LVOIPRequest StatusShip MasterPTL

5LVOIPRequest StatusTTSLPTL

SV-2 LinkBandwidthMediaContentReceiverSender

 

Figure 33.   SV-6 Services Exchange Matrix 

C CONCLUSIONS: POSSIBLE IMPACT OF DODAF ON THE PACIFIC 
TRACKER PROGRAM  

In my estimation, on the whole, had DoDAF been used, there might have been 

improvements to the program.  However, these improvements would have been marginal.  

None would have significantly changed the course of the effort, though at times some of 

the products could have been useful.  In particular, the operational views seemed to have 

the most potential utility.  The system views appear as if they would have provided very 

little utility.  If one considers the reasons for using DoDAF, one could have predicted its 

limited usefulness to the Pacific Tracker project. 

Chapter II provided a description of some other ship systems used in missile 

defense testing and a description of the design evolution major modifications to the ship.  

The description of the other ship systems was provided in order to familiarize the reader 
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with existing systems or in other terms, familiarize the reader with what has been done 

before.  The description of the evolution of four major elements, mission equipment 

electrical power, MDA mission personnel berthing, TTS antenna placement, and the 

communications system was provided to give the reader a sense of the major design 

issues confronting the conversion project.  Three of the major design efforts, electrical 

power system, berthing, and placement of the TTS antennas with radomes have little or 

nothing to do with interoperability.  Of the four major design efforts only the 

communications system is significant to interoperability.     

According to the Defense Science Board, the major reasons for using a 

standardized architecture description, such as DoDAF, is to ensure interoperable and cost 

effective military systems (USD(A&T), ASD(C3I), J6, 1997).  To paraphrase the DAU 

Glossary, interoperability for the Pacific Tracker system is its ability to provide data and 

information and accept the same from the Range and other test assets and to use the data 

and information to enable them to operate effectively together.  The Pacific Tracker’s 

communication system is an integral part of its interoperability.  Since DoDAF grew out 

of the 1997 Command, Control, Communications, Computers, Intelligence, Surveillance, 

and Reconnaissance (C4ISR) Architecture Framework (DoDAF Version 1.5 v I), one 

might conclude that DoDAF would have been very useful.  If this had been the first time 

a SATCOM system was developed to interface with a test range, the preceding 

conclusion would likely be valid.  For the Pacific Tracker, it is not a valid conclusion 

because it has been done before.  It has been done before on Pacific Collector, 

KMRSS/Worthy, and the MLP.  While the communication system on Pacific Tracker is 

more complex than the other three, it is not much more complex.  With the two sensors, it 

is more of a question of bandwidth than complexity. 

In order for the Pacific Tracker system to be interoperable with the Ranges, the 

two sensors have to be interoperable with the Ranges as well as the communication 

system.  Here again, it has been done before.  The TTS-2 is already interoperable, it is an 

operating system.  Its twin, TTS-1, is already operating on Pacific Collector.  While the 

XTR-1 has yet to be fielded, it “…is based on the modern Radar Open Systems 

Architecture originally developed for the suite of instrumentation radars at the Reagan 
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Test Site” (MIT Annual Report 2008).  Because the issues associated with 

interoperability have been previously resolved and the other major parts do not impact 

interoperability, the utility of DoDAF to the Pacific Tracker system was limited.   

The utility of DoDAF seemed to be more associated with the operational views 

than the systems views.  The organizational view, OV-4, and the process view, OV-5, 

proved to be the most interesting.  They provided additional insight to the non-technical 

areas of the program.  As this thesis defined the Pacific Tracker conversion effort, 

establishing processes for mission planning and pre-test event coordination are not part of 

the conversion effort.  The design of the processes and organizations necessary for 

successful operation of the Pacific Tracker are candidates for further research. 
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V. SOME IMPLICATIONS FOR OTHER MDA TEST ASSET 
DEVELOPMENT PROJECTS 

The Beaver State conversion project has been successful without the use of 

DoDAF.  This was due in large part to major interoperability issues having already been 

resolved.  This may not always be the case.  Other test asset development projects are 

likely to benefit as the complexity of the test asset interoperability issues.  The other 

implication is the interoperability of organizations and processes associated with BMDS 

flight testing should also be considered.   

The development of DoDAF products did not produce significant insights in 

regards to the four major elements, mission equipment electrical power, MDA mission 

personnel berthing, TTS antenna placement, and the communications system.  However, 

the development of DoDAF products relative to organizations and processes related to 

the project did provide useful insights.  The products OV-4 and OV-5, in particular, were 

useful.  These products illustrated some complications with management of the project.  

While outside the scope of this thesis, an OV-5 depiction of the process which provides 

data collections requirements to the Pacific Tracker program, revealed several process 

ambiguities which may lead to confusion in the future.   
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